Induction of thermotolerance and heat shock protein synthesis in normal and respiration-deficient chick embryo fibroblasts.
نویسندگان
چکیده
Normal and transformed chick embryo cells and their respective ethidium bromide-treated derivatives that are devoid of a functional respiratory chain were comparatively evaluated for their responses to hyperthermia treatment. No significant difference was found between the control and the respiration-deficient cells. The cells have a similar intrinsic thermosensitivity as judged by their capacity to form colonies after treatment at supraoptimal temperatures, and heat triggers in both cases an equal production of heat shock proteins and a strong induction of thermotolerance. In addition, sodium arsenite, carbonyl cyanide m-chlorophenylhydrazone, oligomycin, and antimycin A induce a similar heat shock protein response in the control and the treated cells. Based on these results, it is concluded that the inhibition by heat of the mitochondrial energy production does not constitute an obligatory rate-limiting event in hyperthermic cell killing and that the intracellular signal triggering development of thermotolerance or heat shock protein production does not obligatorily originate from damages to the respiratory chain. Moreover, the results indicate that the modifications responsible for the increased heat resistance of thermotolerant cells may not, or do not necessarily, involve a stabilization of the mitochondrial energy production.
منابع مشابه
A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein
Heat shock proteins of chick embryo fibroblasts were analyzed on SDS polyacrylamide gradient gels and were found to include not only three previously well-characterized proteins of 25,000, 73,000, and 89,000 D, but also a 47,000-D protein. Two-dimensional gel electrophoresis revealed that this protein was unusually basic (pI = 9.0) and corresponded to a recently characterized, major gelatin- an...
متن کاملRegulation of heat shock protein 70 synthesis by heat shock in the preimplantation murine embryo.
Induced thermotolerance in murine embryos occurs at the 8-cell stage when embryos are maintained in vitro but not until the blastocyst stage if development proceeds in vivo. Present results indicate that ability of embryos to undergo induced thermotolerance is not limited by heat shock protein 70 (HSP70) synthesis. Exposure of 8-cell embryos to 40 degrees C enhanced synthesis of 2 constitutive ...
متن کاملBiosynthesis of a novel transformation-sensitive heat-shock protein that binds to collagen. Regulation by mRNA levels and in vitro synthesis of a functional precursor.
The synthesis of a major collagen-binding glycoprotein of molecular weight 47,000 was previously shown to be altered by malignant transformation as well as by heat shock in chick embryo fibroblasts (Nagata, K., and Yamada, K.M. (1986) J. Biol. Chem. 261, 7531-7536 and Nagata, K., Saga, S., and Yamada, K.M. (1986) J. Cell Biol. 103, 223-229). In this paper, we examined the synthesis of this heat...
متن کاملRole of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae.
Previously we reported that expression of GSH1 (gamma-glutamylcysteine synthetase) and GSH2 (glutathione synthetase) of the yeast Saccharomyces cerevisiae was increased by heat-shock stress in a Yap1p-dependent fashion and consequently intracellular glutathione content was increased [Sugiyama, Izawa and Inoue (2000) J. Biol. Chem. 275, 15535-15540]. In the present study, we discuss the physiolo...
متن کاملTrehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe.
Yeast cells show an adaptive response to a mild heat shock, resulting in thermotolerance acquisition. This is accompanied by induction of heat-shock protein (hsp) synthesis and rapid accumulation of trehalose. Genetic approaches to determine the specific role of trehalose in heat-induced thermotolerance in Saccharomyces cerevisiae have been hampered by the finding that deletion of TPS1, the gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 45 5 شماره
صفحات -
تاریخ انتشار 1985